
1

R E V I E W  P A P E R

International Journal of Occupational Medicine and Environmental Health 2017;30(1):1 – 26
https://doi.org/10.13075/ijomeh.1896.00800

RECENT ADVANCES IN OCCUPATIONAL
AND ENVIRONMENTAL HEALTH HAZARDS
OF WORKERS EXPOSED TO GASOLINE 
COMPOUNDS
CHRISTOPHER E. EKPENYONG and ASUQUO E. ASUQUO

University of Uyo, Uyo, Nigeria
Faculty of Basic Medical Sciences, Department of Physiology

Abstract
The impact of health and environmental hazards, associated with the constituents of gasoline, on occupationally exposed 
workers has been recorded over the past few decades. However, the scientific literature on their pathogenic potential re-
mains incomplete, which could affect the current understanding of the associated health risks. This review provides current 
information based on recently improved research techniques to evaluate gasoline toxicity profiles for humans. Our current 
knowledge provides insight into the intricate mechanism of gasoline-induced adverse effects, including the formation of 
reactive metabolites via bio-activation and subsequent generation of reactive oxygen species (ROS) and oxidative stress, 
which are involved in multiple mechanisms that are central to the aetiology of gasoline-induced toxicity. These mechanisms 
include covalent binding to deoxyribonucleic acid (DNA), leading to oxidative damage, tumor-suppression gene activity, 
and activation of pro-oncogenes. Furthermore, it results in induction of autoimmunity and local inflammatory responses, 
disruption of multiple neurotransmitters and immune cell function, derangement of various enzyme activities (e.g., sodium-
potassium adenosine triphosphate (Na+/K+/ATPase) activity, cytochrome P450 (CYP450), nitric oxide synthase (NOS), 
antioxidant enzyme activities, etc.), conjugation of bile, and non-specific cell membrane interaction, leading to damage of 
the membrane lipid bilayer and proteins. Available data suggests that exposure to gasoline or gasoline constituents have 
the potential to cause different types of illnesses. The data highlights the need to maintain safety measures via suitable 
research, medical surveillance, regulatory control, life style modification, early detection, and intervention to minimize 
exposure and manage suspected cases. They also present novel opportunities to design and develop effective therapeutic 
strategies against gasoline-induced detrimental effects. Int J Occup Med Environ Health 2017;30(1):1–26
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INTRODUCTION
Increased health and safety risks have characterized most 
occupations worldwide. The impact is felt more in the case 
of some occupations and occupational environments than 
others, causing some workers to leave the labour market 
permanently before reaching retirement age. Workers 

around the world are faced with various kinds of work-
place hazards [1], including but not limited to psychosocial, 
biological, physical, and chemical agents. The causal role 
that occupational exposure plays in the pathogenesis of 
disease, injury, and premature death have been recorded 
in many early writings of man. Hippocrates recommends 
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xylene (BTEX)) are the components most toxic to hu-
mans [4]. They constitute the volatile fractions of gasoline 
that are gradually released into the air and may exist in 
both the vapor phase and the water-soluble fraction, due 
to their high vapor pressure and water solubility.
Benzene is designated as the most important and toxic 
chemical of the BTEX compounds [4]. Workers may be 
exposed intentionally or accidentally through inhalation, 
ingestion, or via dermal routes. Petrol pump attendants 
and workers in the petrochemical industries in develop-
ing countries are particularly vulnerable to the hazard-
ous effects of gasoline constituents because they have 
to manipulate the fuel and as a result inhale fuel vapors 
during daily work due to the lack of adequate regulatory 
and protective mechanisms [5]. During refueling at ser-
vice stations, the vapor-saturated air is expelled through 
the filling channel around the nozzle, and into the breath-
ing zone of the service attendant filling the tank. This ex-
posure process is repeated as many times as the attendant 
fills a tank during a work shift and it is further exacerbated 
by the non-usage of personal protective equipment. These 
hydrocarbons are readily absorbed and may cause a wide 
range of adverse health effects. Such effects may vary de-
pending on several factors, including differences in expo-
sure intensity and duration [6], chemical and molecular 
properties of the gasoline, as well as inter-individual dif-
ferences, due to variation in individuals’ pharmacodynam-
ics and pharmacokinetics related to the different gasoline 
components [7]. Since each of the BTEX compounds has 
an inherent toxic potential, workers at gasoline stations 
are the population at greatest risk of being simultaneously 
exposed to the synergistic and/or additive adverse effects 
of the gasoline constituents.
Although the health and environmental hazards of gaso-
line had been previously documented through epidemio-
logical and experimental studies over the past several 
decades [8], most of the study designs were outdated and 
thus were not conducted with contemporary fuels [9]. 

enquiry into patients’ occupational history while trying to 
establish causality.
Besides human health per se, work-related ill-health has 
a significant negative economic impact. According to 
the International Labour Organization [2], at least 2 mil-
lion of the estimated 2.7 billion workers die every year 
from work-related ill-health and injuries, about 160 mil-
lion people suffer from work-related diseases (WRDs), 
and about 270 million fatal and non-fatal work-related 
accidents occur each year [2]. Additionally, about 4% 
of the world’s annual gross domestic product (GDP) 
(1.25 trillion dollars) is lost because of work-related health 
concerns. Work-related ill-health caused by exposure to 
chemical agents (organic solvents) has become a major 
concern in the workplace [3].
Epidemiological data indicates that petrochemical indus-
tries provide an exposure scenario that increases the vul-
nerability of workers to gasoline-related health risks [4]. 
Over the years, there has been a global increase in petro-
chemical firms, including the emergence of many gasoline 
stations, to meet the increasing demands of a fast-growing 
population and because of globalization, urbanization, 
and accelerated economic development. Furthermore, 
there is a concomitant increase in the number of individu-
als serving as full-time gasoline stations service attendants 
who spend a full work-day exposed to gasoline vapors 
from different sources, including losses from underground 
tanks, displacement vapor, losses from filler pipes during 
refueling, fuel spillage, and evaporative and exhaust pipe 
emissions from motor vehicles.
Gasoline is a complex mixture of hydrocarbons and ad-
ditives, including short-chain organic compounds, light-
chain volatile compounds, and heavy-chain hydrocar-
bons [4]; however, the relative concentration of gasoline 
components is dependent upon the crude oil source, refin-
ery process, and production lines used.
Toxicological studies indicate that the light-chain vola-
tile compounds (benzene, toluene, ethylbenzene, and 
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eliminated either unchanged in exhaled air or as inactive 
metabolites in the urine, following metabolism in the liv-
er. The active metabolites undergo further toxicokinetic 
processes, such as generation of reactive oxygen species, 
oxidative tissue damage, leading to altered structure and 
functions, and multi-system toxicity. Empirical data indi-
cates that the toxicokinetic properties of different gasoline 
compounds may be modified by individual susceptibility 
factors, such as genetics, exposure concentration and du-
ration, age, gender, race, and ethnicity (Figure 1).

PHARMACODYNAMICS AND SYSTEMIC TOXICITY
Recent advances in biological assays and in toxicity testing 
have provided greater insights into the health and envi-
ronmental hazards of gasoline exposure in humans.
Accumulated evidence indicates that acute and long-term 
exposure to gasoline compounds may be associated with 
several systemic health effects, including hematological, 
respiratory, reproductive, immunological, dermatologi-
cal, renal, and central nervous system pathologies in hu-
mans. Others include hepatotoxicity, genotoxicity, and 

Moreover, many of the biological assays were not con-
ducted on contemporary inhalation exposures to gasoline. 
Most of the hazards and exposure data from these studies 
was not characterized at the level of detail that would be 
considered adequate today [9]. More so, reports of human 
data are rare, and the scattered available research infor-
mation may not be accessible to those at risk.
Recently improved research techniques and exposure as-
sessment measures, as well as reformulation of gasoline 
blends to avoid the harmful heavy metal additives and 
noxious constituents, such as lead and benzene [10], have 
improved the quantity and quality of data in research lit-
erature, and provide new and interesting results. Some 
studies provided already known facts, while others report-
ed non-significant information, yet other studies reported 
that exposure led to adverse health effects, which has 
generated controversial scientific issues [11], suggesting 
the need for up-to-date review information on the work-
related ill health of gasoline service station attendants, 
globally.
Therefore, this toxicological review document intends to 
provide at-a-glance information to the gasoline exposed 
workers and the general public on the global perspective 
and recent advances regarding the adverse systemic health 
effects associated with exposure to gasoline compounds. 
There is not the least doubt that the evolving understand-
ing of gasoline-induced adverse health effects may have 
implications for potential therapies and preventative 
measures toward minimizing exposure, and hence risk, in 
the workplace.

TOXICOKINETICS
Since gasoline is a mixture of several hydrocarbon com-
pounds and additives, different metabolic/toxicokinetic 
pathways are reported for the different compounds in 
the mixture. Nevertheless, gasoline is readily absorbed 
when inhaled or ingested. Absorption is followed by up-
take and distribution in the body. A small percentage is 
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According to Azari et al. [4], gasoline service station at-
tendants are more exposed to health-risks associated with 
benzene than to other compounds. Benzene biomonitor-
ing of gasoline service station attendants should receive 
attention during medical surveillance of workers [16,17].

Hematoxicity
Several epidemiological studies [6,16–21] have estab-
lished a close association between exposure to gasoline 
compounds and hematoxicity for humans. Although 
the reports of its effects on specific blood cells have been 
somewhat inconsistent, gasoline hematoxicity appears to 
be a constant feature and has been observed even at levels 
previously considered harmless to humans [22–24].
Accordingly, Okoro et al. [20] observed time-dependent 
significant decreases in red blood cell (RBC) count, white 
blood cell (WBC) count, hemoglobin (Hb), mean corpus-
cular concentration (MCHC), mean cell volume (MCV), 
and mean cell hemoglobin (MCH) among 200 exposed 
gasoline station workers at Calabar. A recent study by 
Ajugwo et al. [6] in Elele in Nigeria made a similar obser-
vation. Likewise, studies by Qu et al. [19] and Aleemud-
din et al. [25] showed significant decreases in RBC, WBC 
and neutrophil counts among workers exposed to gasoline 
compounds. Arguing against these findings, Sahb [16] and 
Akintonwa et al. [26] found no association between expo-
sure to gasoline compounds and hematoxicity.
These discrepant findings should be viewed in the light 
of the fact that other potential confounding factors, such 
as variation in assessment measures, individual variation 
(e.g., physical activity status, body mass index (BMI), par-
tition coefficient between air and blood, and perfusion 
rate), and exposure to additional compounds, such as 
toluene, may have an impact on the results. For instance, 
while in some studies [27–29] co-administration of tolu-
ene reduced benzene hematoxicity, others [30] showed 
that the presence of toluene in a toluene–benzene mix-
ture significantly worsened the adverse effect of benzene 

carcinogenic potential (Figure 2). Cases of death follow-
ing the inhalation of high concentrations of gasoline vapor 
have also been reported [12–14].
Many of the toxicological effects associated with exposure 
to gasoline have also been identified for one or more of 
the components of the mixtures. Although most studies 
have not described the exact composition of the mixture 
used, available data suggests that some gasoline (BTEX) 
compounds may be present in concentrations higher than 
their threshold-limit value (TLV), thereby causing effects 
that surpasses those of other constituents. However, it 
is noteworthy that the toxicity profile of some gasoline 
mixtures may remain high, even at a low concentration, 
probably due to differences in toxic kinetic properties of 
the different constituents [15].
The high blood/air partition coefficient as well as the more 
rapid perfusion and absorption rate of BTEX compounds, 
as compared to other gasoline constituents, may partly 
explain the high toxicity potential of BTEX compounds. 
This premise could also explain the high toxicity poten-
tial of benzene as compared to other BTEX compounds. 
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tissue. Additionally, oxidative stress is associated with 
increased vulnerability of the RBCs to destruction, and 
hence with anaemia (Figure 3) [34].
One study [35] found a strong correlation between 
the 4 benzene urine metabolites and hematological out-
comes among the exposed workers; catechol, for in-
stance, was found to be strongly associated with the MCV, 
a measure of the RBC toxicity, whereas hydroquinone 
showed a strong correlation with the absolute lympho-
cyte count. Complete blood count as well as differentials, 

on lymphocytes. It is noteworthy that such interaction may 
depend on the relative concentration of benzene and tolu-
ene in the mixture [31].
The mechanisms underlying gasoline hematoxicity may in 
part stem from the myelosuppressive effect of the various 
gasoline constituents. Benzene, for instance, has been des-
ignated as the most hematoxic gasoline (BTEX) constitu-
ent in humans. Several mechanisms underlying benzene 
hematoxicity have been postulated by various investiga-
tors, which include, but are not limited to the following: 
interference with cell-cycle regulation or expression of de-
oxyribonucleic acid (DNA)-damage/repair-related genes, 
oxidative stress genes, growth factor-related genes, onco-
genes, and hemopoiesis-related genes.
Occupational exposure to benzene has been shown to 
cause degeneration of the bone marrow, aplastic anae-
mia, and leukaemia, owing to its radiomimetic proper-
ties [32,33]. Specifically, benzene exposure is posited 
to cause suppression of the cell cycle by p53-mediated 
over-expression of p21, a cyclin-dependent kinase, with 
resultant changes in the dynamics of erythropoiesis [18], 
including a decrease in growth maturation of pleuripoten-
tial stem cells (colony-forming unit spleen – CFU-S) and 
lineage-restricted stem cells (colony-forming units granu-
locyte, monocyte – GM-CFUs), progenitor cells in vari-
ous stages of maturation, and stromal cells that provide 
growth factors necessary for bone marrow function.
Furthermore, exposure to gasoline inhalation may lead to 
the metabolic activation of some of its constituents (such 
as benzene) to form active metabolites (hydroquinone 
and 1,2,4-benzentriol) by a cytochrome P450 2E1-enzyme 
(CYP2E1)-dependent mechanism. These metabolites are 
known to induce oxidative stress that triggers myelotoxic-
ity and hematoxicity in many ways, including depletion of 
cellular levels of glutathione (GSH), involvement of redox 
cycling, and generation of reactive oxygen species (ROS) 
that may react with macromolecules, such as membranes, 
enzymes, and deoxyribonucleic acid (DNA) in the target 
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Fig. 3. Mechanisms of gasoline-induced hematoxicity
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Slama et al. [39] also reported that exposure to benzene is 
associated with intrauterine growth retardation (IUGR).
According to Hatch et al. [40], exposure to polycyclic aro-
matic hydrocarbons (PAHs) caused increased risk of cyto-
genetic alterations and mutagenic effects in both somatic 
cells and in embryonic tissues.
One animal study [41] reported a structural disruption in 
the uterus, fallopian tubes, and ovaries in female, as well 
as spermatocytic arrest in male rats acutely exposed to 
gasoline inhalation. The authors also reported a signifi-
cant reduction in levels of both male and female repro-
ductive hormones.
A correlative study among female gasoline station workers 
documented a significant association between exposure to 
gasoline and disorders of menstrual patterns and repro-
ductive hormone profiles; more specifically, serum levels 
of oestradiol were persistently low, while fluctuation in 
serum progesterone, follicle-stimulating hormone (FSH), 
luteinizing hormone (LH), and prolactin levels were ob-
served. Disturbance of both cycle length and quantity of 
menstrual flow was also noted [7].
Several studies have found a correlation between ovarian 
hypo- and hyperplasia, as well as a reduction in the dura-
tion of the luteal phase of the menstrual cycle and exposure 
to gasoline compounds, particularly benzene [38,42]. Ben-
zene impairs the release of oestradiol prior to ovulation 
and the release of progesterone at the early luteal phase, 
as well as that of FSH at the early follicular phase [38]. 
Xylene decreases plasma levels of progesterone and oes-
tradiol whereas toluene increases the incidence of ma-
ternal and fetal morbidity and embryonic malformation. 
It reduces the hypothalamic level of gonadotropin-re-
leasing hormone (GnRH) and plasma gonadotropin lev-
els [43,44]. Occupational exposure to BTEX compounds 
also causes poor semen quality [45].
The underlying mechanism by which benzene affects birth 
weight is posited to include suppression of rapidly grow-
ing cells (e.g., bone marrow cells), initiation of oxidative 

and the absolute lymphocyte count in particular, is rec-
ommended when monitoring workers for early biological 
effects of benzene exposure and identification of occupa-
tional environments associated with increased risk of sub-
sequent development of hematopoietic malignancies [35].
In a study of 150 subjects (50 petrol station atten-
dants (PSA), 50 automobile mechanics (AM), and 50 con-
trol subjects), Udonwa et al. [21] found that exposure to gas-
oline vapor by the PSA and AM was associated with a time-
dependent increase in blood methaemoglobin (MetHb) 
concentration, as compared to the controls. Methaemoglo-
bin is an abnormal hemoglobin (Hb), in which the iron mol-
ecule is in the ferric (Fe3+) rather than the ferrous (Fe2+) 
state. With Fe3+, the oxygen-carrying capacity of Hb is im-
paired and, depending on the severity, the affected individ-
ual may present with several clinical symptoms, including 
headache, cyanosis, fatigue, coma, and death.

Reproductive toxicity
Recent research has indicated that gasoline and its 
compounds (BTEX) are reproductive toxicants with 
the potential to cause adverse effects on male [36] and 
female [7,37,38] reproductive systems. As a reproduc-
tive toxin, it may cause changes in sexual behavior, dis-
ordered menstrual patterns and sex hormone profiles [7], 
decreased fertility, as well as interference with fetal 
development [39].
Xu et al. [37] reported increased risk of spontaneous 
abortion among 3000 women employed in a Chinese pet-
rochemical plant, particularly those exposed to benzene 
and gasoline. A large prospective study of 792 female 
workers by Chen et al. [38] found that pregnant work-
ers in the petrochemical industry had a significant posi-
tive correlation between exposure to gasoline and reduc-
tion in birth weight. The association was significant even 
at exposure to a concentration as low as less than 1 ppm 
(5 times below the limit recommended by the Occupation-
al Safety and Health Administration (OSHA)). A study by 
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Besides being the major route of human exposure [50], 
the respiratory tract is highly vulnerable to gasoline toxic-
ity, due to its high accessibility and excellent absorption 
surface, which ensures that the hydrocarbons of gasoline 
are readily absorbed by the lungs [58,59].
Evidence of restrictive [51,60–62] and/or obstructive [63–
65] airway perturbation, or both, have been reported among 
exposed persons. However, most studies report a restric-
tive type of lung function impairment [52,55,60,62,66].
Extensive data has shown that most gasoline station work-
ers show a decline in their lung function capacities and 
volumes (tidal volume (TV), forced vital capacity (FVC), 
forced expiratory volume in 1 second (FEV1), maxi-
mum ventilatory volume (MVV), and forced expiratory 
flow (FEF25–75%) [51,53,56] and symptoms such as chronic 
cough, wheezing, breathlessness, throat congestion, red-
ness of eyes, headache, nausea, and vomiting have been 
reported upon exposure to these pollutants [67].
Sinha and Patil [57] used a cross-sectional study design 
to compare various lung function indices in 60 gasoline 
station workers with those of 50 unexposed participants, 
in Karad City, India. The authors noted a statistically sig-
nificant reduction in FVC, and FEV1, and MVV among 
the exposed compared to the unexposed group. Similar to 
most other studies [54], their study findings were sugges-
tive of restrictive lung function impairment.
Begum and Rathna [52] reported consistent findings 
among 28 non-smoking males working at petrol stations 
in Mysore City, India. Aprajita et al. [66] in their study 
reported a significant decline in values of FVC, FEV0.5, 
FEV1, FEV3, FEF50%, FEF25–75%, and peak expiratory flow 
rate (PEFR) in petrol pump workers.
The pathophysiological mechanisms underlying gasoline-
induced respiratory function impairment have been pos-
tulated to include induction of the local inflammatory 
response along the airway, and/or oxidant/antioxidant 
imbalance by gasoline and its component metabolites, 
respectively (Figure 4).

damage in the cells, and suppression of growth by its 
metabolites [46,47].
One animal study suggested that the induction of oxidative 
cell injury was the major pathophysiologic mechanism in 
the reproductive toxicity of toluene. Burmistrov et al. [48] 
showed that toluene induced an increase in the activities 
of oxidative stress-related enzymes (glutathione and cata-
lase) and the intensity of lipid peroxidation in ovarian tis-
sues, leading to oxidative ovarian cell damage.
Sirotkin et al. [43] demonstrated the induction of ovarian 
cell apoptosis, proliferation, turnover, and release of pep-
tide and steroid hormones and growth factors as the plau-
sible mechanisms underlying the reproductive toxicity 
of BTEX compounds. However, other studies have sug-
gested that BTEX compounds may exert their effects at 
the level of the hypothalamic–pituitary axis. Toluene and 
xylene have been found to cause a significant reduction in 
serum levels of GnRH, GnRH-receptors and pituitary-1 
messenger ribonucleic acid (mRNA) in experimental 
animals [7,49].

Respiratory toxicity
In developing as well as some developed countries where 
the gasoline vapor recovery system (GVRS) is not com-
monly used at service stations, service station attendants 
and customers are directly exposed to inhaling a signifi-
cant volume of the vapor discharged from the tank into 
their breathing zone; inhalation of fumes while refueling 
automobiles therefore becomes the main source of human 
exposure to gasoline [50]. When inhaled, gasoline vapor 
is readily absorbed and may cause significant respiratory 
function impairment [51–57].
Recent findings have shown that gasoline vapor and its 
constituents may cause considerable damage to the respi-
ratory system, and affect both the upper and lower airway 
tract. It may irritate the mucous membrane, initiate local 
inflammatory changes with associated pulmonary con-
gestion, oedema, and acute exudative tracheobronchitis. 
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Wooden et al. [70], who found that workers exposed 
to fuel experienced upper-airway inflammation, as evi-
denced by significant increases in MPO, IL-8, and nasal 
fluid vanadium levels.
In one study [60], a 6-week daily exposure of animals to 
gasoline inhalation caused extensive histological changes to 
the epithelial cell lining of the bronchioles, including dilata-
tion of the smooth endoplasmic reticulum, loss of secretory 
granules in the Clara cells, loss of ciliated cells, prominent 
nuclear alterations, necrotic type II pneumocytes, degenera-
tion of the mitochondria, as well as some neoplastic changes.
Grebic et al. [71] studied the effect of intermittent ex-
posure of mouse lungs to gasoline vapor on metallothio-
neins (MT) (MT-I and MT-II), proteins involved in cel-
lular protection against ROS, genotoxicity, and apoptosis. 
Upregulation of MT-I/II was observed in the lungs, central 
nervous system, and kidney tissues, as a protective action 
against ROS from gasoline.
Gasoline metabolites (benzequinone and 1,2,4-benzen-
etriol) are potent inducers of the ROS, creating an imbal-
ance of oxidant/antioxidant molecules, and hence oxida-
tive stress, similar to the effect of a local inflammatory re-
sponse. Evidently, the local inflammatory and antioxidant 
response mechanisms are complementary, since oxidative 
stress and inflammation have reciprocal influences on 
each other in respiratory disease (Figure 4) [72].

Neurotoxicity
Gasoline-induced neurotoxicity has attracted a significant 
research interest worldwide. Many collaborative human 
and animal studies have linked exposure to gasoline to 
an increased risk for neuropsychological symptoms and 
mood disorders [73–75].
Many constituents of gasoline (BTEX) are known 
neurotoxins [76,77], and over-exposure may damage 
the central nervous system (CNS) [78], causing depres-
sion [78], facial flushing, ataxia, vertigo, mental confu-
sion, dizziness, giddiness, nausea, weakness, headache, 

Many gasoline constituents, particularly the BTEX com-
pounds, are known respiratory mucosal irritants. Accord-
ing to local inflammation theory, chronic or over-exposure 
to gasoline/diesel fumes leads to chronic inflammation of 
the respiratory tract and the lung parenchyma [68], pulmo-
nary congestion, oedema, and exudative tracheobronchitis.
In support of this hypothesis, Behndig et al. [69] dem-
onstrated increased markers of airway inflammatory 
and antioxidant response mechanisms (increased mu-
cosal neutrophils, mast cells, and levels of interleu-
kin-8 (IL-8), myeloperoxidase (MPO), glutathione, and 
urate) in 18 study participants exposed to 100 μg×m–3 
diesel exhaust fumes for 18 h. Their study findings 
were consistent with those of a previous study by 

C

BA

Reactive metabolites
– 1,2,4-benzenetriol
– benzequinone

Oxidative stress:

SOD

GPx

CAT

Generation of ROS

Inflammatory
mediators: IL-8,

mast cells,
and neutrophils

Lung function
impairment

Airway
inflammation

Inhaled gasoline
vapor

Metabolic
activation

Generation of ROS

IL-8 – interleukin-8.
Other abbreviations as in Figure 3.
Pathways of gasoline-induced respiratory function impairment:
A – reactive metabolites generated by the oxidative metabolism of 
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Fig. 4. Mechanisms of gasoline-induced respiratory function 
impairment
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loss, reduced manual dexterity, and reduced vigilance 
scores whereas at 75 ppm these changes were absent [88]. 
Furthermore, a 1-h exposure to 900 ppm gasoline vapor 
caused slight dizziness and irritation of the eyes, nose, 
and throat. At 10 000 ppm, nose and throat irritation de-
veloped within 2 min, and dizziness within 4 min, while 
signs of intoxication developed in 4–10 min in exposed 
humans.
In a similar manner, numerous behavioral and biochemi-
cal effects have been reported in studies of animals af-
ter short- and/or long-term exposure to gasoline vapor. 
Kinawy [89] reported significant fluctuation in levels 
of monoamine neurotransmitters (dopamine, norepi-
nephrine, and serotonin) and other biochemical param-
eters (sodium-potassium adenosine triphosphatase (Na+/
K+/ATPase), superoxide dismutase, acetylcholinester-
ase (AChE), protein (Pr), GSH, lipid peroxidase) in dif-
ferent brain areas of animals exposed to gasoline vapor.
Several reports support that induction of oxidative stress 
by metabolites from gasoline constituents underlies 
the pathogenesis of its neurotoxic effects. In many of these 
studies, biochemical markers of oxidative stress were 
found to increase, while antioxidant enzymes decreased 
significantly. Animals exposed to gasoline vapor had sig-
nificantly elevated levels of lipid peroxides and a decrease 
in superoxide dismutase activity in brain and liver [89,90]. 
The underlying neuropathology associated with oxidative 
stress may include non-specific cell membrane interac-
tions, leading to impaired membrane Na+/K+/ATPase 
activity [91] and modulation of multiple neurotransmitter 
systems (Figure 5). Exposure to toluene was found to de-
crease N-methyl-D-aspartate currents and increase gam-
ma-aminobutyric acid (GABA) currents as well as glycine 
receptors [92].

Nephrotoxicity
Although previously debated [93], several recent stud-
ies [94] have shown that frequent and heavy exposure to 

blurring of vision, slurred speech, difficulty in swal-
lowing, and in some cases, coma and death may en-
sue within seconds. Survivors may sustain irreversible 
brain damage. A study by Rosenberg et al. [79] found 
evidence of persistent abnormal brain activities upon 
magnetic resonance imaging (MRI) 18 months after 
withdrawal from solvent exposure. Gasoline station 
workers are at a high risk and reports indicate cases of 
impaired intellectual capacity, and psychomotor and 
visual-motor functions. More immediate and delayed 
memory and increased mortality from mental disor-
ders have been reported among gasoline workers than 
among controls [76,80–82].
A recent study by Tunsaringkarn et al. [83] found that 
the most prevalent symptoms reported by gasoline service 
station attendants were headache, fatigue, and throat ir-
ritation. This study supported previous work that showed 
that tanker drivers with long-term exposure to gasoline va-
por developed a significant high-fatigue scale, headache, 
dyspnoea, irritation in the throat, dizziness, nausea, and 
saliva excretion compared to control [77].
The link between the neurotoxic effects of gasoline and 
the presence of these symptoms has been well estab-
lished [84,85]. However, it is noteworthy that the clinical 
presentation may be dose- and/or exposure-duration-de-
pendent, after adjusting for other covariates. For instance, 
a study assessing the potential dose-dependent neurotoxic 
effects of xylene and toluene showed that inhalation of 
xylene at an air concentration of above 90 ppm caused 
reduced reaction time and manual dexterity, disruption 
of body balance, and changes in the electroencephalo-
gram (EEG). These effects were absent at concentrations 
below 90 ppm. At 300 ppm, reaction time, memory span,  
and the critical flicker fusion test were affected [86]  
whereas exposure at 100–400 ppm is associated with imp-
airment of body balance and increased reaction time [87].
In a parallel study, occupational exposure to toluene 
at 100–150 ppm was associated with short-term memory 
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Studies of both humans and experimental animals indicate 
that exposure to gasoline compounds is associated with 
a significantly higher risk of abnormal values of nephro-
toxicity markers, including derangement in serum elec-
trolyte (potassium (K+), sodium (Na+), calcium (Ca2+), 
chloride (Cl–), and bicarbonate (HCO3

–)) balance [98–
103]. Impaired excretion of metabolic waste products, 
e.g., creatinine, urea, blood urea nitrogen (BUN), and uric 
acid [94,104,105], and altered acid-base homeostasis [102].
Studies among healthy workers exposed to hydrocarbons 
have shown a higher incidence of proteinuria, oliguria, albu-
minuria, hematuria, and leucocyturia than controls [50,106–
109]. Furthermore, an increased incidence of raised blood 
pressure (BP) [103] and anaemia [6] has also been reported.
In several human studies, prolonged exposure to hy-
drocarbons has also been found to be associated with 
a variety of severe glomerular lesions, including mild to  
severe glomerular nephritis (GN) and Goodpasture’s syn- 
drome [110–115].
Evidently, hydrocarbon exposure may indeed induce GN 
and worsen its course, and hence renal function, in many 
patients [116]. Additionally, acute tubular injury, including 
tubular necrosis, and interstitial oedema with associated his-
topathological changes, has been reported in humans [115].
In a case-control study, Ishola et al. [116] showed a di-
rect relationship between exposure to hydrocarbons and 
the incidence of GN in their patients. There was a signifi-
cantly higher number of exposed individuals in the GN 
group than in the control group [116]. These findings were 
consistent with a previous study by Bell et al. [117], who 
recorded a dose-response relationship between exposure 
to hydrocarbons and GN.
A collaborative animal experimental study also demon-
strated a wide range of lesions in the nephrons of animals 
exposed to hydrocarbons compared to the controls. Most of 
these lesions were similar to those observed in humans and 
included immunoglobulin A (IgA) nephritis [91], mesen-
gial nephropathy [118], crescentic nephropathy [119], focal 

gasoline constituents is associated with increased risk of 
renal function impairment, due to their potential to ei-
ther initiate kidney injury or worsen extant impaired renal 
function, or both [95,96].
In many cases, the glomerular cells and tubular cells of 
the kidney are the most vulnerable site for injury [97]. 
Characteristically, these sites are more sensitive to vasoac-
tive compounds; possess efficient reabsorption and secre-
tion processes, many transporters, large membrane sur-
face areas, high intracellular concentrating potential, and 
baseline medullary hypoxia, increasing the risk of damage 
by toxicants and solvents.
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Na+/K+/ATPase – sodium-potassium adenosine triphosphatase;  
CNS – central nervous system.
Reactive metabolites generated by the oxidative metabolism  
of gasoline compounds generate ROS causing oxidative stress.  
Possible pathways:
A – alternatively, oxidative stress may cause alterations in multiple 
neurotransmitter systems and hence neurotoxicity;
B – oxidative stress may induce non-specific membrane interactions 
leading to damage to membrane lipid bilayer and proteins,  
subsequent disturbance of transmembrane enzyme activities,  
and hence neurotoxicity.

Fig. 5. Possible pathways of gasoline-induced neurotoxicity
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segmented proliferative nephropathy [120], glomerular 
sclerosis, minimal change nephropathy [121], and focal seg-
mented nephropathy. Moreover, the analysis of 26 experi-
mental studies in animals by Ravnskov [96] showed that an-
imals exposed to 13 different hydrocarbons demonstrated 
glomerular changes reminiscent of human GN.
Several other studies [30,122,123] have suggested an as-
sociation between renal cancer and exposure to gasoline 
and gasoline constituents.
Nevertheless, a few other studies have found no association 
between exposure to hydrocarbons and renal function im-
pairment, probably due to the effects of several covariates, 
including genetic susceptibility and sex differences [98], dif-
ferences in the types and levels of hydrocarbon exposure, and 
the “healthy worker” effect, which may depend on the crude 
oil origin, differences in the processing technique and blends 
used, season-to-season variation, and the additives required 
to meet the specified standard of performance [124].
The mechanism underlying gasoline-induced renal function 
impairment is based on the high lipophilicity of gasoline and 
induction of oxidative stress. Induction of oxidative stress 
by gasoline oxidative metabolites has been reported to 
cause disruption of the immune system, including induction 
of autoimmunity, effects on T-cell function, suppression of 
immunofunction, increased post-glomerular resistance, and 
decreased glomerular filtration rate (GFR). Furthermore, 
induction of physiochemical damage to the glomerular 
and tubules, including damage to the membrane lipid bi-
layer and proteins, due to the high lipophilicity of gasoline, 
have been reported by Ravnskov [95]. Such damage may 
compromise the functional integrity of the membrane, with 
a resultant derangement in Na+/K+/ATPase activity and 
membrane proteins. This may lead to a cascade of events 
leading to renal function impairment (Figure 6).

Hepatotoxicity
Many human and animal studies [103,125–130] have 
shown that prolonged exposure to gasoline compounds 
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Na+/K+/ATPase – sodium-potassium adenosine triphosphatase.
Pathways:
A – gasoline (parent nephrotoxicant) may bind to the membrane lipid 
bilayer and proteins due to its high lipophilicity, leading to damage  
to the membrane bilayer and proteins, which causes inhibition  
of Na+/K+/ATPase activity, which in turn leads to disruption of ion  
homeostasis and cell injury;
B – alternatively, gasoline may undergo biotransformation to reactive 
intermediates (e.g., 1,2,3-benzenetriol and benzequinone) that bind 
covalently to macromolecules and in turn alter their activity  
(e.g., inhibition of Na+/K+/ATPase), resulting in cell injury;
C – additionally, gasoline may increase in the renal cells directly after 
being biotransformed into reactive intermediates through redox cy-
cling. The resultant increase in ROS may cause oxidative damage and 
cell injury;
D – finally, the generated ROS may cause disruption of the immune 
system, leading to immune perturbation, and a resultant induction of 
autoimmunity. This may cause cell injury. In either case, persistent 
exposure may lead to cell death and renal failure.

Fig. 6. Pathways underlying gasoline-induced nephrotoxicity
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and hepatocytes, causing leakage of the cellular compo-
nents (Figure 7) [133]. This idea is supported by decreased 
serum antioxidant enzymes activities, including superox-
ide dismutase (SOD), catalase (CAT), and glutathione 
peroxidase (GPx), and increased levels of oxidative stress 
markers (lipid peroxidase, malondialdehyde (MDA)) in 
gasoline workers [134,135].

(BTEX compounds) may represent a significant risk fac-
tor for a wide spectrum of liver disorders, including sub-
clinical hepatitis, necrotic inflammatory hepatitis, chole-
static liver disorders, cirrhosis, and liver cell carcinoma, 
and may constitute a potential health hazard to human-
ity [105]. This idea is supported by several studies showing 
a significant correlation between exposure to gasoline or 
gasoline constituents, and disturbances in serum levels of 
liver function indices, as well as extensive histopathologi-
cal changes in the animal models of exposure.
In fact, listed among the commonly affected indices are 
significant increases in serum levels of aspartate amino-
transferase (AST), alanine aminotransferase (ALT), alka-
line phosphatase (ALP), serum bilirubin concentration, 
gamma-glutamyl transferase (GGT), and serum protein 
levels [104,126].
In one animal study, the histology of liver sections of 
the exposed animals revealed extensive liver cell effects, 
including significant degeneration of cells, fatty changes 
in the hepatocytes (hepatosteatosis), severe cell inflam-
mation, cirrhotic changes, hepatocyte fibrosis, and ne-
crosis [130]. Associated increases in liver size and weight 
(hepatomegaly) in the exposed animals have also been re-
ported [131]. Several mechanisms contribute to gasoline-
induced hepatotoxicity, including the induction of cellular 
degeneration, downregulation of gene expression, and 
induction of oxidative stress [132]. Inhibition of CYP2E1, 
which was recently reported in animals exposed to gaso-
line vapors [103] is potentially deleterious to the liver.
However, induction of oxidative stress appears to play 
a central role in the initiation and progression of gasoline-
induced hepatotoxicity. The metabolism of gasoline and 
its compounds is known to generate reactive metabolites 
(1,2,4-benzenetriol, benzequinone), which interact with 
the membrane lipids of hepatocytes to produce lipid per-
oxide (lipid peroxidation) and ROS, including hydroxyl 
and superoxide radicals. Reactive oxygen species and 
lipid peroxidation lead to damage of the biomembrane 
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Mechanisms:
A – generation of ROS leads to lipid peroxidation and damage to the 
hepatic membrane and tissues; leakage of hepatic enzymes and an in-
crease in their serum levels ensues;
B – additionally, impairment of CYP450 enzyme activity may trigger 
a cascade of biochemical processes, leading to decreased bile  
acid-independent bile flow and accumulation of cholestatic reactions, 
which subsequently increase serum levels of bilirubin and ALP.

Fig. 7. Mechanisms of gasoline-induced hepatotoxicity
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electrocardiograms (ECG) of workers exposed to benzene 
in a petro-chemical factory.
Similarly, Uboh et al. [131] found disturbances in serum 
electrolytes levels (hyperkalaemia, hyponatraemia) and 
a significant increase in the atherogenic index of plas-
ma (AIP) in animals exposed to gasoline vapors. Conse-
quently, exposure to gasoline vapors could be associated 
with the risk of atherosclerosis and hence cardiovascular 
disease. The pathophysiology of cardiovascular disease 
associated with gasoline exposure is unclear; however, 
studies suggest the role of oxidative stress in various 
pathogenic processes, leading to hypertension and other 
cardiovascular diseases (Figure 8). These include, but are 
not limited to, disturbances in the regulatory role of nitric 
oxide (NO) [146,147,149].
It is known that bioactive gasoline metabolites may induce 
an oxidant/antioxidant imbalance, generate the ROS, and 
hence increase oxidative stress. Oxidative stress inhibits 
nitric oxide synthesis through the inhibition of dimethyl 
arginine, dimethyl aminohydrase (DDAH), which is an 
enzyme known to degrade methyl arginine, a nitric ox-
ide synthase (NOS) inhibitor. When DDAH is inhibited, 
methyl arginine accumulates, causing inhibition of NOS, 
and leading to vasoconstriction, increased peripheral re-
sistance, and thereby an increase in BP [150]. Addition-
ally, evidence suggests that oxidative stress could also re-
sult in the development of atherosclerotic cardiovascular 
disease [151,152]. This idea is supported by the findings 
of atherogenic dyslipidaemia and an increased AIP in hu-
mans and animals exposed to gasoline fumes [131].
Some gasoline constituents have also been found to dis-
rupt various myocardial enzyme activities, leading to im-
paired intracellular conduction and myocardial electro-
lyte disturbances. Disturbances in the activity of Na+/K+/
ATPase, leading to changes in intracellular Na+, K+, Mg2+, 
and Ca2+ levels, as well as changes in the ECG, have been 
reported in humans and animals exposed to gasoline 
vapors [145].

Induction of hepatic CYP450 by gasoline hydrocar-
bons has also been postulated. One study reported 
a decrease in CYP2E1 by 34% in female mice exposed 
to 50 mg/kg of benzene for 3 weeks [136]. Such effects 
on CYP450 have been reported to induce several he-
patocellular disorders, including cholestasis, hepatitis, 
and cirrhosis [137–140].
In studies by George et al. [141] and Tanaka et al. [142], 
inhibition of CYTP450 caused significant cholestatic 
liver disorders that led to increased serum bilirubin, to-
tal bile acid, and alkaline phosphatase levels, which was 
similar to the changes previously observed in gasoline 
station attendants following prolonged exposure to gaso-
line vapors.

Cardiotoxicity
Some data indicates that long-term exposure to organic 
solvents, including gasoline or gasoline compounds, is 
significantly associated with a higher prevalence of hy-
pertension [14,143–147]. In particular, Bener et al. [144] 
found a statistically significantly higher prevalence of 
hypertension among workers exposed to gasoline vapors 
at different gasoline stations than among unexposed in-
dividuals. Additionally, Wiwanitkit [146] reported a sig-
nificantly higher prevalence of hypertension in workers 
with a higher exposure to benzene (100%) than in the less 
exposed groups (49%). Likewise, a study by Kotseva and 
Popov [145] found a higher risk of hypertension among 
workers occupationally exposed to a high level of xylene 
and benzene.
A collaborative study by Mørck et al. [143] recorded 
a significant increase in the systolic BP of humans oc-
cupationally exposed to toluene. Poklis [14] and Lito-
vitz [148] reported increased cardiac sensitization to cir-
culating catecholamines, leading to severe arrhythmias 
and death, in humans exposed to high concentrations of 
gasoline. Kotseva and Popov [145] found an increased 
prevalence of hypertension and pathological changes in 
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chromatid exchange (SCE), nondisjunction, mitotic in-
terference, or misaggregation of chromatin [154–156]. 
Other observations include significant increases in 
mean comet tail length and the frequency of micro-
nuclei in peripheral blood lymphocytes (PBL). In par-
ticular, these genotoxic biomarkers have been found at 
higher levels in gasoline station workers than in control 
groups [155,157]. Moreover, Tunsaringkarn et al. [83] 
and Moro et al. [158] have reported a significant corre-
lation between blood and air levels of gasoline constitu-
ents and the levels of genotoxic biomarkers. Their study 
findings were consistent with those of several other pre-
vious reports [159].
Indeed, gasoline station workers are at risk of significant 
cytogenetic damage, as demonstrated by other investi-
gations [160]. Nevertheless, gasoline-induced genotoxic-
ity has been somewhat inconsistent and may depend on 
the demographic characteristics of the study participants, 
including age, gender, race, dietary habits, physical activ-
ity status, alcohol intake, and smoking habits. Other fac-
tors include the duration of exposure, exposure volume 
of gasoline per unit of time, past medical history, family 
history, and simultaneous exposure to multiple genotoxic 
agents. For instance, many studies have observed an in-
crease in biomarkers of genotoxicity within a few years 
after exposure to gasoline and a subsequent decrease over 
time [152,153], but other studies found no significant re-
lationship between genotoxic effects and the duration of 
exposure [161].
Bukvic et al. [162], found no relationship between the fre-
quencies of SCE and the duration of employment in 
the gasoline industry. The explanation for the inverse rela-
tionship between the blood levels of genotoxic biomarkers 
and the duration of exposure to gasoline varies. According 
to Yadav and Seth [152], a higher degree of damage to 
peripheral lymphocytes could cause depletion of aberrant 
cells on prolonged exposure; the health worker effect is 
another plausible explanation [163].

Genotoxicity
Available data suggests that gasoline station workers are 
exposed to several potential genotoxins in gasoline va-
pors [84,152,153], including benzene, xylene, toluene, and 
other chemicals [154]. However, benzene is considered 
the most hazardous, due to its genotoxic and carcinogenic 
effects [153,154].
Many studies have shown that exposure to these com-
pounds has the potential to cause chromosomal/genetic 
aberrations, including strand breakage, deletion of sister 
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Fig. 8. Pathways underlying gasoline-induced cardiotoxicity
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the concentration of the implicated gasoline compound 
has been highlighted. For instance, while toluene and xy-
lene causes significant cell growth inhibition, exposure to 
benzene at the same concentration is not associated with 
genotoxic endpoints [166].
A number of pathophysiological mechanisms have been 
postulated to underlie the genotoxic effects of gaso-
line and gasoline constituents, including the genera-
tion of ROS, following their breakdown to produce re-
active metabolites, and subsequent interaction of ROS 
with DNA to induce stand breaks [153,167]. It has been 
postulated that the reactive metabolites resulting from 
gasoline bioactivation covalently bind to cellular proteins 
and DNA, leading to the formation of DNA adducts, and 
causing toxicity via multiple mechanisms, such as direct 
cytotoxicity, oncogene activation, chromosomal aber-
ration, and downregulation of the host tumor control 
mechanisms (Figure 9) [168,169].

Immunotoxicity
It is long-known that occupational exposure to certain 
chemicals may induce severe immune disorders in hu-
mans [170]; nevertheless, few studies have examined 
the immunotoxic effects of gasoline on exposed gasoline 
station workers or workers in other petro-chemical in-
dustries. This is probably due to the complexity of the im-
mune response and the difficulty of studying the system 
in vivo. Findings from animal studies are clearer and are 
predominant in the literature. In this review, few human 
studies on the changes in the immune response pattern in 
gasoline station workers were found.
A cross-sectional study conducted by Akinosun et al. [171] 
on 29 gasoline station workers and 22 age- and sex-mat-
ched controls found no significant differences in the levels 
of immunoglobulin (Ig) A and IgG between gasoline sta-
tion workers and controls, while IgM levels were signifi-
cantly increased in petrol attendants as compared with con-
trols. A recent animal study by White et al. [172] concluded  

Similarly, while age and sex were not positively associ-
ated with chromosomal damage in some studies, oth-
ers found the converse [161,164]. According to Rekha-
devi et al. [165], gasoline-induced genotoxicity may be 
confounded by the life-style habits of the exposed gasoline 
service station attendants, including smoking habits, diet, 
and alcohol intake. Moreover, the confounding effect of 
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Fig. 9. Mechanisms of gasoline-induced genotoxicity
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Santa Maria. In a similar study, Quevedo et al. [184] found 
that exposure to fuel for a minimum of 3 years may cause 
changes in the central auditory system, even in individu-
als with normal auditory thresholds, with a characteristic 
increase in absolute latencies and interaural differences 
in the wave pattern of the brain-stem auditory potential. 
Thus, service attendants at gasoline stations are exposed 
to the risk of impaired hearing or hearing loss.

Ocular effects
Emerging evidence suggests that occupational exposure 
to organic solvents may be associated with impairment of 
visual function in many respects, and in particular color 
vision, including losses of blue yellow color, and secondary 
red green color dyschromatopsia [185–187].
In a psychophysical test for evaluating visual function 
in 29 gas station workers, Lacerda et al. [188] found lower 
spatial contrast sensitivities, higher error values in fre-
quency modulation 100 (FM100), and a wider color dis-
crimination ellipse area in exposed workers as compared 
with controls.
A cross-sectional study by Costa et al. [189] assessing 
the visual outcome of chronic exposure to a mixture of 
organic solvents among 25 gas station workers reported 
significantly higher color discrimination thresholds, along 
the protein, deutan, and tritan confusion axis, and higher 
ellipse and ellipticity areas in the exposed workers as com-
pared with control groups. Sirdah et al. [190] also found 
significantly more complaints of eye itches, redness, and 
pain among workers at liquefied petroleum gas stations in 
the Gaza governorate. Therefore, gasoline station workers 
may be exposed to a higher risk of visual impairment.

Dermatologic effects
Growing evidence suggests that prolonged or repeated ex-
posure to gasoline may be associated with various forms of 
skin lesions or manifestations. Sirdah et al. [190] reported 
a higher prevalence of skin redness, rashes, and itching 

that gasoline, either on its own or mixed with certain non-
immunotoxic additives (e.g., t-amyl methyl ether (TAME), 
and t-butyl alcohol (TBA)) did not adversely affect the hu-
moral immune response of the test animals; however, when 
mixed with some immunotoxic agents, such as ethanol 
(EtOH) [173,174], ethyl t-butyl ether (ETBE), and diiso-
propyl ether (DIPE), suppressed humoral responses.
Gasoline immunotoxicity may indeed be influenced by ad-
ditive immunotoxins, particularly when present at a high 
concentration or upon prolonged exposure. This concept 
is supported in a study by Uzma et al. [169] who observed 
significant decreases in Ig levels, cluster of differentia-
tion 4 (CD4) T cells and the CD4+/CD8+ ratio among 
gasoline station workers exposed to benzene, which is 
known for its immunotoxic effects [175–177], including 
suppression of the components and function of the im-
mune system, such as suppression of Ig production and ac-
tivities of B- and T-lymphocytes in both acute and chronic 
epidemiological studies [140,178,179]. Increased markers 
of oxidative stress (ROS and serum MDA), as well as de-
creased antioxidant enzymes (GSH and total superoxide 
dismutase (T-SOD)), have been observed in exposed indi-
viduals as compared with controls, suggesting the role of 
oxidative stress in the pathogenesis of the immunotoxicity. 
These findings are consistent with previous studies show-
ing an association between oxidative stress and impaired 
cell-mediated and humoral immunity [180].

Effect on special senses
Ototoxicity
There is significant empirical data suggesting that high lev-
els of acute exposure or low levels of chronic exposure to 
gasoline or gasoline constituents is associated with a higher 
prevalence of hearing impairment or loss [181,182]. Toch-
etto et al. [183] reported a greater and time-dependent 
absence of acoustic reflexes and an exacerbated acoustic 
reflex, which is evidence of cochlear and central auditory 
pathway effects, in gasoline station attendants in the city of 
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The evolving understanding of the molecular basis for 
the multi-systemic pathologies induced by gasoline could 
facilitate preventative measures and the development of 
more effective therapeutic strategies against gasoline in-
duce negative effects. Furthermore, the studies reviewed 
here indicate that the research literature on this topic is 
still incomplete; these gaps should be addressed in future 
studies. In particular, exposure misclassification should 
be minimized. Detailed evaluation of gasoline exposure 
indices (exposure dose and duration, frequency of peak 
exposure, and exact composition of gasoline compounds 
causing effects) is recommended. Additionally, the effect 
of individual susceptibility factors on the toxicokinetic 
profile of gasoline constituents is highlighted here. In all, 
the impact of gasoline on human health poses serious 
health challenges to humanity globally, and particularly in 
developing countries.
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